FLAVONOIDS FROM BRICKELLIA CHLOROLEPIS AND B. DENTATA

AYHAN ULUBELEN,* BARBARA N. TIMMERMANN and Tom J. Mabry

Department of Botany, University of Texas, Austin, TX 78712, U.S.A.

(Received 20 July 1979)

Key Word Index—Brickellia chlorolepis; B. dentata; Compositae; Eupatorieae; 6-methoxyflavonol methyl ethers, glycosides and sulfate; 6-methoxyflavone methyl ethers; flavonol glycosides; flavonol methyl ether glycoside.

Abstract—Eleven flavonoids including three new glycosides were isolated from Brickellia chlorolepis and one new and nine known flavonoids were obtained from B. dentata. The new glycosides from B. chlorolepis are 6-methoxykaempferol 3-rhamnoglucoside, spinacetin 3-rhamnogalactoside and veronicafolin 3-rhamnoglucoside. The known compounds identified from B. chlorolepis are patuletin, casticin, artemetin, eupatolitin 3-galactoside, quercetin 3-rhamnogalactoside, rutin, isorhamnetin 3-galactoside and eupatin 3-SO₃Ca_{1/2}. B. dentata contains the new glycoside eupalitin 3-galactoside and nine known compounds: pectolinarigenin, salvigenin, eupafolin, cirsiliol, eupatorin, eupatolitin, eupatolitin 3-glucoside, eupatolitin 3-galactoside and eupatin.

INTRODUCTION

In a continuation of a phytochemical investigation of the genus *Brickellia* (Tribe Eupatorieae, Family Compositae) [1–3], we now report the isolation and characterization of eleven flavonoids from the leaves of *Brickellia chlorolepis* (Woot. and Standl) Shinners and ten from *B. dentata* (D. C.) Sch. Bip. Three of the flavonoids from *B. chlorolepis* are new glycosides: 6-methoxykaempferol 3-rhamnoglucoside, spinacetin 3-rhamnoglactoside, and veronicafolin 3-rhamnoglucoside. In addition, the new glycoside eupalitin 3-galactoside was obtained from *B. dentata*.

In contrast to the large amounts of several sulfated flavonoids found in B. californica, B. laciniata and B. veronicaefolia [1-3], only one sulfated flavonoid in small amounts was obtained from B. chlorolepis and none from B. dentata. B. chlorolepis is characterized by seven flavonol glycosides while B. dentata only produces 6-methoxyflavonoids, three of which are glycosides.

RESULTS

Leaves of B. chlorolepis and B. dentata were both extracted by the same procedure; namely, an initial extraction with aqueous methanol and an extraction of the aqueous concentrate with a series of organic solvents: n-hexane, chloroform and ethyl acetate. The chloroform extract of B. chlorolepis yielded 6-methoxyquercetin 3,7,3',4'-tetramethyl ether (13) [3,

4] (artemetin) and 6-methoxyquercetin 3,7,4'-trimethyl ether (12) [2-4] (casticin), while the EtOAc fraction afforded quercetin 3-rhamnogalactoside (6), rutin (7) [4], isorhamnetin 3-galactoside (8) [4], 6-methoxykaempferol 3-rhamnoglucoside (9), 6-methoxyquercetin 7-methyl ether (eupatolitin) 3-galactoside (15) [1-4], 6-methoxyquercetin 3'-methyl ether (spinacetin) 3-rhamnogalactoside (17), 6-methoxyquercetin 7,3'-dimethyl ether (veronicafolin) 3-rhamnoglucoside (18) and 6-methoxyquercetin (patuletin) (11) [2]. The remaining water layer contained 6-methoxyquercetin 7,4'-dimethyl ether (eupatin) 3-SO₃Ca_{1/2} (20) [1-3].

The identities of patuletin, casticin, artemetin, eupatolitin 3-galactoside and eupatin 3-SO₃Ca_{1/2} were established by direct comparison (TLC, UV, ¹H NMR, MS) with authentic samples which were previously obtained from other *Brickellia* species [1–3]. The structure assignments for the known flavonols not previously isolated from *Brickellia* were determined by TLC, UV, NMR and MS and, when possible, co-chromatography (Tables 1 and 2). The structure

Pectolinarigenin (1) R_1 , $R_3 = H$; $R_2 = Me$ Salvigenin (2) $R_1 = H$; R_2 , $R_3 = Me$ Eupafolin (3) $R_1 = OH$; R_2 , $R_3 = H$ Cirsiliol (4) $R_1 = OH$; $R_2 = H$; $R_3 = Me$ Eupatorin (5) $R_1 = OH$; R_2 , $R_3 = Me$

^{*}Permanent address: Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey.

Table 1. Chromatographic data for flavonoids from Brickellia chlorolepis and B. dentata*

	R, values			Colors at 350 nm [†]	
Compound	TBA'	HOA¢	UV	UV/NH ₃	UV/NA
Salvigenin (2)	0.91	0.10	P	P	P
Quercetin 3-Gal-Rha (6)	0.41	0.50	P	Y	0
Rutin (7)	0.49	0.64	P	Y	0
Isorhamnetin 3-Gal (8)	0.60	0.45	P	Y	Y
6-Methoxykaempferol 3-Glu-Rha (9)	0.33	0.52	P	Y	Y
Eupalitin 3-Gal (10)	0.72	0.79	P	- Y	Y
Eupatolitin 3-Glu (16)	0.58	0.50	P	Y	О
Spinacetin 3-Gal-Rha (17)	0.64	0.66	P	Y	Y
Veronicafolin 3-Glu-Rha (18)	0.44	0.60	P	Y	Y

^{*2}D-PC on Whatman 3 MM paper were developed first in TBA (t-BuOH-HOAc-H₂O, 3:1:1) and then in 15% HOAc.

Table 2. UV data for flavonoids from Brickellia chlorolepis and B. dentata*

Compound	MeOH (λ _{max} , nm)	NaOMe (λ _{max} , nm)	AlCl ₃ (λ _{max} , nm)	AlCl ₃ /HCl (λ _{max} , nm)	NaOAc (λ _{max} , nm)	NaOAc/H ₃ BO (λ _{max} , nm)
Salvigenin (2)	329, 275	327, 276	352, 299, 290 sh, 260 sh	351, 300, 290 sh, 260 sh	331, 277	331, 277
Quercetin 3-Gal-Rha	360, 332 sh, 262 sh, 254	410, 328 sh, 270	,	400, 364, 264	387, 320 sh, 270	380, 260
Rutin (7)	362, 296 sh, 268 sh, 256	410, 330, 270	432, 304 sh, 274	400, 366 sh, 304, 266	400, 320 sh, 272	378, 262
Isorhamnetin 3-Gal (8)	352, 266 sh, 252	416, 330, 270	400, 366 sh, 298 sh, 262	400, 360 sh, 300 sh, 262	394, 274	356, 268 sh, 254
6-Methoxykaempferol 3-Glu-Rha (9)	347, 275	412, 330, 280	380, 270	369, 290 sh, 265	347, 275	347, 273, 255
Eupalitin 3-Gal (10)	340, 271	398, 272	368, 305 sh, 279	360, 305 sh 280	408 sh, 344, 271	340, 271
Eupatolitin 3-Glu (16)	353, 262 sh, 257	410, 257	442, 305 sh, 257	380, 305 sh, 255	420 sh, 365, 257	380, 257
Spinacetin 3-Gal-Rha (17)	357, 272 sh, 257	422, 338, 273	390, 300 sh, 268	378, 300 sh, 266	390, 325, 273	357, 272, 257
Veronicafolin 3-Glu- Rha (18)	247, 275 sh, 258	418, 275	375,270	370, 267	430 sh, 347, 270 sh, 257	347, 270 sh, 257

^{*} All spectra were recorded using standard procedures [5] on a Beckman DB Spectrophotometer; sh: shoulder.

assignments for the new compounds are discussed separately.

Spectral (UV, MS) and hydrolytic analyses established the new glycosides to be 6-methoxykaempferol 3-rhamnoglucoside (9), 6-methoxyquercetin 7,3'-dimethyl ether (veronicafolin) 3-rhamnoglucoside (18) and 6-methoxyquercetin 3'-methyl ether (spinacetin) 3-rhamnogalactoside (17). The linkages in the disaccharide moieties in both 9 and 18 were assigned on the basis of lack of hydrolysis with β -glucosidase.

In addition to the data mentioned above, the 1H NMR spectrum of 17 (as TMSi derivative in CCl₄) showed a doublet at δ 0.9 for rhamnose Me, sugar protons (10 H) at 3.30–3.65, two methoxyl signals at 3.74 and 3.88, rhamnose H₁ at 4.35, galactose at 5.65 (in accord with a 3-O-rhamnogalactosyl moiety). The other signals appeared at δ 6.5 for H-8, a doublet (J=9 Hz) at 6.8 for H-5', a double doublet (J=2 Hz) at 7.5 for H-6' and a doublet (J=2 Hz) at 7.75 for H-2'. The two methoxyl resonances did not exhibit any significant shift in benzene- d_6 in accord

Quercetin 3-Gal-Rha (6) $R_4 = H$; $R_5 = Gal$ -Rha Rutin (7) $R_4 = H$; $R_5 = Glu$ -Rha Isorhamnetin 3-Gal (8) $R_4 = Me$; $R_5 = Gal$

with C-3' (3.64; Δ +0.10 ppm) and C-6' (3.88; Δ 0.0) methoxyl groups.

The flavonoids obtained from the hexanechloroform extract of В. dentata were 4'-methyl methoxyapigenin ether **(1)** [1, 47 (pectolinarigenin), 6-methoxyapigenin 7,4'-dimethyl ether (2) [4] (salvigenin), 6-methoxyluteolin (3) [1, 4] (eupafolin), 6-methoxyluteolin 7,4'-dimethyl ether (5) [2, 4] (eupatorin) and 6-methoxyquercetin, 7-methyl

[†]P: purple; Y: yellow; O: orange. NA refers to Naturstoffreagenz A in MeOH.

6-Methoxykaempferol 3-Glu-Rha (9) $R_6 = H$; $R_7 = Glu$ -Rha Eupalitin 3-Gal (10) $R_6 = Me$; $R_7 = Gal$.

ether (14) [2-4] (eupatolitin). The ethyl acetate extract and the water layer yielded 6-methoxyluteolin 7methyl ether (4) [1, 4] (cirsiliol), eupatolitin (14), eupatolitin 3-galactoside (15), eupatolitin 3-glucoside (16), eupatin (19) and the new flavonol 6methoxykaempferol 7-methyl ether (eupalitin) galactoside (10) (Tables 1 and 2). The identities of all the known flavonoids were established by direct comparison (TCL, UV, 'H NMR and MS) with authentic samples which except for salvigenin, eupatolitin 3-glucoside and eupalitin 3-galactoside were previously obtained from other Brickellia species [1-3]. The latter compound showed a purple UV fluorescence on PC (yellow after hydrolysis), changing to yellow both with ammonia and when the TLC plates were sprayed with Naturstoffreagenz A in MeOH. The UV and MS data and R_f values established the compound to be a flavonol 3-glycoside (Tables 1 and 2). Hydrolysis with 0.1 N TFA yielded galactose as the only sugar and eupalitin (TLC, UV and MS comparison with a standard sample). The ¹H NMR spectrum of 10 (TMSi derivative in CCl₄) exhibited signals for two rotamers: 6 sugar protons between δ 3.4 and 3.6, two methoxy signals at 3.90 and 3.73 and two galactose H_1 doublets (J = 7 Hz) at 5.7 and 5.9. Other signals established a 6-oxygenated kaempferol derivative: a sharp singlet at 6.5 for H-8, two doublets (J=9 Hz) near 6.88 for H-3' and H-5' and two doublets (J=9 Hz) near 7.96 for H-2' and H-6'. As expected, when the compound was examined in C₆D₆ the C-7 methoxyl signal exhibited a large shift of 0.51 ppm, while the C-6 methoxyl signal shifted only 0.02 ppm. The spectral and hydrolytic data established that the new glycoside is 6-methoxykaempferol 7methyl ether 3-galactoside (10).

Patuletin (11) R_8 , R_9 , R_{10} , $R_{11} = H$ Casticin (12) $R_{10} = H$; R_8 , R_9 , $R_{11} = Me$ Artemetin (13) R_8 , R_9 , R_{10} , $R_{11} = Me$ Eupatolitin (14) R_8 , R_{10} , $R_{11} = H$; $R_9 = Me$; $R_8 = Gal$ Eupatolitin 3-Gal (15) R_{10} , $R_{11} = H$; $R_9 = Me$; $R_8 = Gal$ Eupatolitin 3-Glu (16) R_{10} , $R_{11} = H$; $R_9 = Me$; $R_8 = Glu$ Spinacetin 3-Gal-Rha (17) R_9 , $R_{11} = H$; $R_{10} = Me$; $R_8 = Gal$ -Rha Veronicafolin 3-Glu-Rha (18) $R_{11} = H$; R_9 , $R_{10} = Me$; $R_8 = Glu$ -Rha Eupatin (19) R_8 , $R_{10} = H$; R_9 , $R_{11} = Me$ Eupatin 3-SO₃ $Ca_{1/2}$ (20) $R_{10} = H$; R_9 , $R_{11} = Me$; $R_8 = SO_3Ca_{1/2}$

EXPERIMENTAL

Plant material. Leaves and vouchers of B. chlorolepis were collected in October 1977 in Sul Ross Hill, Alpine, Brewster County, Texas (voucher specimen J. F. Weedin 930 is deposited in the Herbarium, Sul Ross University, Alpine, Texas). Leaves and vouchers of B. dentata were collected in August 1977, in McKinney Falls State Park, Travis County, Texas (voucher specimen B. N. Timmermann 877 is deposited in Lundell Herbarium, The University of Texas at Austin). The plant material of both species was air-dried prior to extraction.

Extraction, purification and identification of flavonoids from B. chlorolepis and B. dentata. General chromatographic and electrophoretic techniques which were employed here were described in detail in reports on other Brickellia species [1-3]. Ground leaf material (131 g) of B. chlorolepis was extracted ×5 with 71, 80% and 51, 50% aq. MeOH until the extract was colorless. The extracts were then combined and evapd under red. pres. until only H2O remained. The aq. layer was extracted successively with 800 ml n-hexane, 21. CHCl₃, and 21. EtOAc. PC indicated that the flavonoids in the hexane and CHCl3 extracts were similar and therefore. these extracts were combined. Similar results with PC were obtained with the EtOAc extract and the H2O layer and therefore these were also combined. In the case of B. chlorolepis, the combined hexane (4.8 g) and CHCl₂ (28 g) extracts produced a yellow ppt. (700 mg) which was filtered off and chromatographed over a Polyclar column (7×90 cm. 600 g) packed in MeOH-H₂O (4:1). The column was eluted first with MeOH and then with EtOAc, Artemetin (400 mg) eluted first as a single compound, followed by a small amount of an unidentified flavone. The material from the supernatant (200 mg) was chromatographed on a cellulose column (9× 30 cm, 90 g) with 15% HOAc. The flavonoids isolated from this column were additional artemetin (100 mg), 2 mg of an unidentified flavone which was also present in the ppt., casticin (10 mg) and veronicafolin 3-rhamnoglucoside (50 mg). The material from the EtOAc extract and the supernatant from the H₂O layer were combined (40 g) and chromatographed on a Polyclar column (8×60 cm, 500 g) packed in the elution solvent. The column was eluted first with CHCl3-MeOH-MeCOEt-2,4-pentanedione (20:10:5:1) followed by CHCl3-MeOH-MeCOEt-2,4pentanedione (10:10:5:1). The polarity of the solvent was increased until the column was finally eluted with MeOH. Patuletin (6 mg) and eupatolitin 3-galactoside (30 mg) eluted first as single compounds and these were further purified by Sephadex LH-20 columns using MeOH and MeOH-H2O (4:1), respectively. Quercetin 3-O-rhamnogalactoside (5 mg), rutin (6 mg) and isorhamnetin 3-galactoside (6 mg) eluted together and were further separated on a Polyclar column (5×80 cm, 200 g) first with C₆H₆-MeCOEt-MeOH (4:3:3) followed by C₆H₆-MeCOEt-MeOH (4:3:6:) and finally MeOH. 6-Methoxykaempferol 3-rhamnoglucoside eluted next and spinacetin 3-rhamnogalactoside (30 mg) was isolated as the last compound when the column was eluted with MeOH. The ppt. (15 mg) that formed in the H₂O layer was filtered off and recrystallized from hot MeOH-H2O. The material was first chromatographed over a Polyclar column (3×20 cm, 50 g) with H₂O and then over Sephadex LH-20 with MeOH-H2O (4:1). Only one flavonoid, eupatin 3-SO3 Ca_{1/2} (8 mg), was obtained.

The extraction and chromatographic techniques used for the isolation of the flavonoids from 123 g of dry leaf material of B. dentata were similar to those already described for B. chlorolepis. The combined hexane (3.5 g) and CHCl₃ (10 g) extracts yielded pectolinarigenin (8 mg), salvigenin (20 mg), eupafolin (15 mg), eupatorin (30 mg) and eupatolitin (10 mg). The material from the EtOAc extract (2.1 g) and H_2O layer (2.5 g) were combined; by standard chromatography cirsiliol (20 mg), eupatolitin 3-galactoside (40 mg), eupatolitin (10 mg), eupatolitin 3-galactoside (30 mg), eupatolitin 3-glucoside (15 mg) and eupatin (20 mg) were obtained.

Acknowledgements—We thank Dr. A. M. Powell and J. F. Weedin, Sul Ross University, Alpine, Texas, for plant collections and identifications. This work was supported by NSF Grant DEB 76-09320, NIH Grant HD-04488 and the Robert A. Welch Foundation Grant F-130.

REFERENCES

- Mues, R., Timmermann, B. N., Ohno, N. and Mabry, T. J. (1979) Phytochemistry 18, 1379.
- Timmermann, B. N., Mues, R., Mabry, T. J. and Powell, A. M. (1979) Phytochemistry 18, 1855.
- Roberts, M. F., Timmermann, B. N. and Mabry, T. J. (1979) Phytochemistry 19, 127.
- Harborne, J. B., Mabry, T. J. and Mabry, H. (eds.) (1975)
 The Flavonoids. Chapman & Hall, London.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970)
 The Systematic Identification of Flavonoids. Springer, New York.